BBS: Inland Empire Archive Date: 02-16-93 (02:16) Number: 277 From: DIK COATES Refer#: NONE To: AL SCHOEPP Recvd: NO Subj: Spline program 2/2 Conf: (2) Quik_Bas
>>>> QUOTING Al Schoepp to Dik Coates <<<< Start of Part 2 of 2 '*************************** SUBPROGRAM Spline ****************************** ' ' Draws a smooth curve through points (x(i%),y(i%)). The screen call must ' be Mode 10 with a monochrome monitor and EGA board or Mode 9 with a ' colour monitor and EGA board. Option Base 1 Command must be used. ' The coordinate is based on the screen location with the maximum value of ' "x" less than or equal to 639 and the maximum value of "y" less than or ' equal to 349. ' ' ARGUMENTS: f%()=array for x-coordinates or y-coordinates ' t()=array for t-coordinates ' s%=number of points ' sz%=number of divisions from first point to last ' ft()=x or y-coordinate values for spline ' ' RETURNS: ft()=x or y-coordinate values for spline ' ' SUBPROGRAMS CALLED: nul ' SUB Spline (f%(), t(), s%, sz%, ft()) STATIC DIM a(50), b(50), c(50) FOR i% = 2 TO s% b(i%) = t(i%) - t(i% - 1) c(i%) = (f%(i%) - f%(i% - 1)) / b(i%) NEXT i% b(1) = b(2) + b(3) c(1) = b(3) a(1) = ((b(2) + 2 * b(1)) * c(2) * b(3) + b(2) * b(2) * c(3)) / b(1) FOR i% = 2 TO s% - 1 g = -b(i% + 1) / c(i% - 1) a(i%) = g * a(i% - 1) + 3 * (b(i%) * c(i% + 1) + b(i% + 1) * c(i%)) c(i%) = g * b(i% - 1) + 2 * (b(i%) + b(i% + 1)) NEXT i% g = b(s% - 1) + b(s%) a(s%) = ((b(s%) + g + g) * c(s%) * b(s% - 1) + b(s%) * b(s%) * (f%(s% - 1) - f%(s% - 2)) / b(s% - 1)) / g g = -g / c(s% - 1) c(s%) = b(s% - 1) c(s%) = g * b(s% - 1) + c(s%) a(s%) = (g * a(s% - 1) + a(s%)) / c(s%) FOR i% = s% - 1 TO 1 STEP -1 a(i%) = (a(i%) - b(i%) * a(i% + 1)) / c(i%) NEXT i% FOR i% = 2 TO s% d = (f%(i%) - f%(i% - 1)) / b(i%) e = a(i% - 1) + a(i%) - 2 * d b(i% - 1) = 2 * (d - a(i% - 1) - e) / b(i%) c(i% - 1) = (e / b(i%)) * (6 / b(i%)) NEXT i% wt = 0 i% = 0 j% = 1 dt = t(s%) / (sz% - 1) WHILE i% < sz% IF wt > t(j% + 1) THEN j% = j% + 1 END IF i% = i% + 1 h = wt - t(j%) ft(i%) = f%(j%) + h * (a(j%) + h * (b(j%) + h * c(j%) / 3) / 2) wt = wt + dt WEND END SUB '************************* SUBPROGRAM Splinecurve *************************** ' ' Draws a smooth curve through points (x(i%),y(i%)). The screen call must ' be Mode 10 with a monochrome monitor and EGA board or Mode 9 with a ' colour monitor and EGA board. Option Base 1 Command must be used. The ' Subprogram divides the total chord length of the curve into 600 equal ' spaces. This value can be modified by revising "nd%" to a greater or ' lesser value. The coordinate is based on the screen location with the ' maximum value of "x" less than or equal to 639 and the maximum value of ' "y" less than or equal to 349. ' ' ARGUMENTS: n%=number of points ' xx%()=x-coordinate values for spline ' yy%()=y-coordinate values for spline ' ' RETURNS: nul (draws curve on screen) ' ' SUBPROGRAMS CALLED: Graphpoints(xx%(),yy%(),(n%)) ' Spline(xx%(),tt(),(n%),(nd%),spx()) ' Drawcurve((nd%),spx(),spy()) ' SUB Splinecurve (n%, xx%(), yy%()) STATIC DIM spx(600), spy(600) REDIM tt(n%) nd% = 600 IF UBOUND(xx%) <> n% OR UBOUND(yy%) <> n% THEN PRINT "ERROR: Array size must equal number of points" EXIT SUB END IF tt(1) = 0 FOR i% = 2 TO n% tt(i%) = tt(i% - 1) + FNDist(xx%(i% - 1), yy%(i% - 1), xx%(i%), yy%(i%)) NEXT i% CALL Graphpoints(xx%(), yy%(), (n%)) CALL Spline(xx%(), tt(), (n%), (nd%), spx()) CALL Spline(yy%(), tt(), (n%), (nd%), spy()) CALL Drawcurve((nd%), spx(), spy()) END SUB End of Part 2 ... "I drank WHAT!?" - Socrates --- Maximus 2.00 * Origin: Durham Systems (ONLINE!) (1:229/110)
Books at Amazon:
Back to BASIC: The History, Corruption, and Future of the Language
Hackers: Heroes of the Computer Revolution (including Tiny BASIC)
Go to: The Story of the Math Majors, Bridge Players, Engineers, Chess Wizards, Scientists and Iconoclasts who were the Hero Programmers of the Software Revolution
The Advent of the Algorithm: The Idea that Rules the World
Moths in the Machine: The Power and Perils of Programming
Mastering Visual Basic .NET